Research Groups

There are currently over 30 research groups at the Dunn School, with leaders drawn from across the world. Their diverse interests, backgrounds and expertise creates a dynamic and stimulating environment. Many groups share common research interests which fosters the vibrant scientific community found at the Dunn School.

Jordan Raff

Molecular dissection of centrioles, centrosomes and cilia

Centrioles organise the assembly of two important cell organelles: centrosomes and the cilia; our goal is to understand how these organelles function at the molecular level.

Elizabeth Robertson

Transcriptional regulators of mammalian development

Our research exploits mouse genetics to investigate the key signalling cues and transcriptional regulators governing cell fate decisions in the developing mammalian embryo. In particular, we have been studying the TGF family of secreted growth factors, including the ligand Nodal, and its downstream effector Smad2,...

Sumana Sanyal

SUMANA SANYAL WILL JOIN THE DUNN SCHOOL IN JANUARY 2020

Flavivirus biogenesis and their strategies for host immune evasion

Dengue and Zika represent two of the major mosquito-borne flaviviruses that collectively have huge health implications worldwide. Dengue infects approximately 400 million people annually, often causing severe pathologies...

Quentin Sattentau

Advancing understanding of HIV pathogenesis and vaccine design

Our current research spans the fields of HIV-1 dissemination, HIV-1 antibody-based vaccine design, and the molecular basis of allergy. We use a multi-disciplinary approach, which includes immunology, virology, chemistry, and cell biology together with cutting-edge imaging techniques to address fundamental...

Christoph Tang

Bacterial pathogenesis: molecular mechanisms to prevention

Human bacterial pathogens are a specialized subset of array microbes we encounter as part of our flora. The group seeks to understand the basis of how pathogens colonise specific niches in the body, evade elimination by the immune system, and cause disease. We study Neisseria spp., which are leading...

Anton van der Merwe

Recognition of abnormal cells by leukocyte receptors

My group studies the mechanisms by which leukocytes, such as T cells, use cell surface receptors to recognise infected or otherwise abnormal cells. The T cell receptor (TCR) plays a major role in this process by probing the surfaces of cells for the presence of 'foreign' peptides presented on MHC molecules in a...

David Vaux

Molecular pathology of post-translational modification

The group is interested in the molecular mechanisms by which pathological perturbations in the post-translational modifications of proteins (including proteolytic maturation, oligomeric assembly, ubiquitination, phosphorylation and fatty acyl modification) can lead to severe human disease. Conditions resulting from...