Research Groups

There are currently over 30 research groups at the Dunn School, with leaders drawn from across the world. Their diverse interests, backgrounds and expertise creates a dynamic and stimulating environment. Many groups share common research interests which fosters the vibrant scientific community found at the Dunn School.

Bass Hassan

Structure and function of genes that regulate tumour phenotypes

Multiple cellular pathways are deregulated in tumours, some of which alter growth and the propensity for tumour cells to invade and spread to other sites. Our group focuses on two imprinted genes frequently disrupted in cancer, IGF2 ligand and IGF2 receptor (IGF2R). We have studied the structural basis of...

William James

HIV-Macrophage interactions and stem cell technology

The HIV research in our lab is supervised by Dr Kenny Moore, a James Martin Stem Cell Fellow.

Susan Lea

Host-pathogen interactions

An understanding of the way in which an invading pathogen interacts with its host at a molecular level is an essential aid to understanding the nature and extent of disease caused. My group aims to use a variety of techniques to probe the interactions that characterise different disease processes. Central to this approach is the use of X-ray...

Kevin Maloy

Innate immune pathways in intestinal homeostasis.

The major research interests of the lab are related to host-bacterial interactions in the intestine and their impact on protection from infection and their contribution to intestinal inflammation. We are trying to understand how host innate immune circuits detect and respond to different microbial challenges in the...

Shona Murphy

The CTD of RNA polymerase II and elongation checkpoints

During transcription of both protein-coding and snRNA genes by RNA polymerase II (pol II), transcription and RNA processing are tightly coupled. Our most recent work has focused on understanding the mechanics of this connection.

 

Conrad Nieduszynski

DNA replication and genome stability

Complete, accurate replication of the genome is crucial for life. Errors during DNA replication give rise to mutations that cause genetic disease; failures during genome replication directly underlie several human disorders. DNA replication is the direct target of many chemotherapeutic agents.

Chris Norbury

Post-transcriptional regulation of gene expression in cancer.

We study post-transcriptional aspects of gene regulation, and specifically how these differ between cancer cells and their normal counterparts. One project in this area focuses on translation initiation factor eIF3e (also known as INT6), high levels of which in breast cancer are...

Nicholas Proudfoot

Gene punctuation: Transcriptional termination in eukaryotes.

We study molecular mechanisms that define the extent of transcription units in mammalian genomes by focusing on the molecular mechanism of RNA polymerase II (Pol II) termination.