Research Groups
There are currently over 30 research groups at the Dunn School, with leaders drawn from across the world. Their diverse interests, backgrounds and expertise creates a dynamic and stimulating environment. Many groups share common research interests which fosters the vibrant scientific community found at the Dunn School.
Genome Stability and Cell Cycle
Our research goal is to elucidate how proliferating human cells safeguard their genomic DNA against various stresses coming from the environment (e.g., radiation, genotoxic agents) and from normal processes of cell growth (e.g., DNA replication, transcription & mitotic chromosome dynamics).
Influenza virus replication at the molecular level
Influenza viruses are important human and animal pathogens. They cause widespread clinical and veterinary disease and have a considerable economic impact. Our laboratory focuses on the fundamental molecular mechanisms of influenza virus replication, aiming to understand the molecular determinants of host range and...
Cell biology of intercellular signalling
The main questions we study are what cellular mechanisms regulate signalling between animal cells, and how does that signalling control biological functions like physiology, development and pathology?
Regulation of inflammatory responses in vivo
Inflammation is the response of vascularised tissues to injury, metabolic disturbance and infection. Acute inflammation typically lasts only a few days while chronic inflammation can last for months or years, and is a defining feature of many important human diseases including rheumatoid arthritis and coronary heart disease...
R-loop biology in health and disease
Our research focuses on understanding the mechanisms governing gene regulation in humans in health and disease conditions. In particular, we are interested in unusual RNA/DNA structures, called R-loops. These are three-stranded structures formed during transcription and composed of an RNA hybridising to a complementary DNA strand,...
Regulation of mitotic progression and chromosome segregation
Cell division is the fundamental basis for growth and development of an organism. Millions of cell divisions have to occur before an organism reaches its final size. Throughout the life span of an organism, blood, skin and intestinal cells have to be constantly replaced by further cell division. High fidelity...
RNA dependent DNA damage response
Genetic information stored in DNA is continuously exposed to endogenous or exogenous damaging factors. Efficient DNA damage repair is a fundamental process for every living organism. The accumulation of DNA damage affects cellular viability and leads to a variety of diseases, particularly cancer.